Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ping Wang,* Yong Xiao and Zhi-Feng Li

School of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

Correspondence e-mail:
wangp520@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.020$
$w R$ factor $=0.054$
Data-to-parameter ratio $=22.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquatris(nicotinato- κ O)bis(1,10-phenanthroline$\kappa^{2} N, N^{\prime}$)lanthanum(III) trihydrate

The title compound, $\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$-$3 \mathrm{H}_{2} \mathrm{O}$, consists of a mononuclear complex and three noncoordinated water molecules. The La atom is coordinated by five O atoms of three nicotinate groups and two coordinated water molecules, and four N atoms of two bidentate phenanthroline molecules, in a tricapped trigonal-prismatic coordination geometry. The complex molecule and water molecules are linked into layers through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The title compound, (I), is isostructural with its $\left[M\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}[M=\operatorname{Pr}$ (Yue et al., 2004), Nd (Liu \& Wang, 2004) and Ce (Liu et al., 2005)] analogues. It consists of a mononuclear $\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.\right.$ $\left.\mathrm{NO}_{2}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] neutral molecule and three uncoordinated water molecules (Fig. 1). The La atom possesses trigonal prismatic coordination geometry (Table 1), in which the $\mathrm{La}-\mathrm{O}$ bond distances range from 2.4199 (10) to $2.5416(10) \AA$ and the $\mathrm{La}-\mathrm{N}$ bond distances range from 2.7565 (12) to 2.7757 (11) \AA, which are similar to those in the previously reported isostructural complexes. In (I), the uncoordinated water molecules participate in the extensive hydrogen-bonding interactions formed between the water molecules and the N and O atoms of the nicotinate groups (Table 2), resulting in a layered structure.

(I)

Experimental

1,10-Phenanthroline monohydrate ($0.0198 \mathrm{~g}, 0.10 \mathrm{mmol}$) and nicotinic acid ($0.0123 \mathrm{~g}, 0.10 \mathrm{mmol}$) were completely dissolved in $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml}, 1: 1 \mathrm{v} / \mathrm{v}) ; \mathrm{La}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.0158 \mathrm{~g})$ was added and the mixture was stirred for 40 min . The resulting white slurry was filtered and the filtrate was left to stand at room temperature. Crystals of (I) suitable for X-ray analysis were obtained after two weeks (yield ca 35%).

Received 23 August 2005 Accepted 30 August 2005 Online 7 September 2005
\qquad

Crystal data

$\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=955.70$
Triclinic, $P \overline{1}$
$a=9.0676$ (1) \AA 。
$b=12.9618$ (2) \AA
$c=17.9351$ (3) A
$\alpha=84.998(1)^{\circ}$
$\beta=80.800(1)^{\circ}$
$\gamma=84.190(1)^{\circ}$
$V=2064.73(5) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.791, T_{\text {max }}=0.811$
45880 measured reflections

$Z=2$

$D_{x}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 985 reflections
$\theta=3.3-26.7^{\circ}$
$\mu=1.10 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Block, colorless
$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.054$
$S=1.04$
12414 reflections
552 parameters
H -atom parameters constrained
12414 independent reflections 11284 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=30.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-18 \rightarrow 17$
$l=-25 \rightarrow 23$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0318 P)^{2}\right. \\
& +0.2509 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.005 \\
& \Delta \rho_{\text {max }}=0.50 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.26 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0010 \text { (2) }
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{La}-\mathrm{O} 4$	$2.4199(10)$	$\mathrm{La}-\mathrm{N} 2$	$2.7565(12)$
$\mathrm{La}-\mathrm{O} 6$	$2.5200(10)$	$\mathrm{La}-\mathrm{N} 3$	$2.7566(12)$
$\mathrm{La}-\mathrm{O} 2$	$2.5355(10)$	$\mathrm{La}-\mathrm{N} 4$	$2.7678(11)$
$\mathrm{La}-\mathrm{O} 7$	$2.5367(10)$	$\mathrm{La}-\mathrm{N} 1$	$2.7757(11)$
$\mathrm{La}-\mathrm{O} 8$	$2.5416(10)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1^{\text {i }}$	0.85	1.77	2.612 (2)	172
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 9^{\text {ii }}$	0.85	1.85	2.701 (2)	178
O8-H8A $\cdots \mathrm{O}^{\text {i }}$	0.85	1.82	2.643 (2)	163
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 10^{\mathrm{i}}$	0.85	1.90	2.744 (2)	176
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 10^{\text {iii }}$	0.85	1.96	2.786 (2)	164
O9-H9B \cdots O11 ${ }^{\text {iv }}$	0.85	1.92	2.763 (2)	173
$\mathrm{O} 10-\mathrm{H} 10 A \cdots 3^{\text {iv }}$	0.85	1.89	2.731 (2)	172
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iv }}$	0.85	2.05	2.886 (2)	169
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{~N} 6^{\text {i }}$	0.85	2.04	2.868 (2)	165
O11-H11B \cdots N5 ${ }^{\text {v }}$	0.85	2.05	2.894 (2)	174

Symmetry codes: (i) x, y, z; (ii) $x, y+1, z$; (iii) $x, y-1, z$; (iv) $x-1, y, z$; (v)
$-x+2,-y+1,-z+1$.

Figure 1
The asymmetric unit of (I), showing 35% probability displacement ellipsoids (arbitrary spheres for H atoms).

H atoms attached to C atoms were included at calculated positions and treated as riding atoms $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were found in a difference map, relocated in idealized positions $(\mathrm{O}-\mathrm{H}=0.85 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Jiangxi Provincial Educational Foundation (2005-146) and the Jiangxi University of Science and Technology Doctoral Foundation (2003-1).

References

Bruker (1998). SMART, SAINT and SHELXTL (Versions 5.16). Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, F.-C., Li, J.-R. \& Ng, S. W. (2005). Acta Cryst. E61, m9-m10.
Liu, F.-C. \& Wang, X.-L. (2004). Acta Cryst. E60, m1630-m1632.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yue, Z.-Y., Jin, H.-J., Yan, P.-F. \& Gao, P. (2004). Acta Cryst. E60, m890-m892.

